@ THE WORLD BANK

IBRD ¢ IDA | WORLD BANK GROUP

VIME

ANALVTICS

Development Economics ¢ Impact

repkit

Stata tools for reproc
and automated verificat

Luis Eduardo San | ‘ *
Junior Data Saentlst
World Bank

About this work

* Our team has verified 200+ reproducibility packages for World Bank research
» 77% of works reviewed used Stata
* Only 18% are reproducible at first try

* Introducing repkit: a Stata package to address common reproducibility challenges
(and make verification easier)

World Bank Policy Research Working Papers

. = AT n
Yoricy FEsearcH WORKING PAPERS
www.worldbank.org

ORKING PAPER 10999

WORLD BANKGROUP

(l'::ﬁ: h;,f;“:ﬂd[k:r‘, iﬁxf:lo&,j::d Reproducibility package for Climate Shocks
T ;ngh;m?mn ‘ and Their Effects on Food Security, Prices, and

htt DS: //WWW WO rl d ba n k i ladgin Agricultural Wages in Afghanistan
org/en/research/brief/wo e

rld-bank-policy- o

research-working-

) Reproducibio Rosearch Ropository T
ApErs o https://reproducibility.worldbank.org

https://www.worldbank.org/en/research/brief/world-bank-policy-research-working-papers
https://www.worldbank.org/en/research/brief/world-bank-policy-research-working-papers
https://www.worldbank.org/en/research/brief/world-bank-policy-research-working-papers
https://www.worldbank.org/en/research/brief/world-bank-policy-research-working-papers
https://www.worldbank.org/en/research/brief/world-bank-policy-research-working-papers
https://reproducibility.worldbank.org/

1 — Check for instabilities in your code: reprun

The problem: m
reprun "main.do
* Reproducibility issues arise from Stata commands

that introduce unnoticed/uncontrolled randomness

an
T
D:l..

* If hundreds or thousand of lines of code, costly to
detect where the instability starts main.

j=B
o

Solution: l \

* reprun runs a do-file twice and compares

intermediate results line-by-line across runs, ?
flagging inconsistencies I
* Works smoothly with sub do-files and loops Data signatures — Data signatures

: L of run 1, by of run 2, also by
* Word of caution: it's only as fast as your actual code code line code line

1 — Check for instabilities in your code: reprun

Lines 193-195: Sorting on non-unique variable
and dropping observations based on sorting

CleanDataCoxBazarde X
152
—{ 193 sort uidl
194 by uidl: gen dup = cond(_N==1,8, n)
195 drop if dup==
196 drop dup uid_r2 cbps_r2 status
197 save"RawData\instrument_cbps™, replace
108

reprun "CleanDataCoxBazaar.do", compact

Checking file:
L €:/Users/wb558768/Documents/GitHub/reprun-example/CleanDataCoxBazar. do

Line #

Seed RNG State

Sort Order RNG

Data Checksum

Loop iteration:

133

1512
1515
1566
1662

Run 1 | Run 2 | Match
I I

Run 1 | Run 2 | Match
I I

Change Change DIFF
Change Change DIFF
Change Change DIFF
Change Change DIFF
Change Change DIFF

Run 1 | Run 2 | Match
I I

Change Change
Change Change
Change Change
Change Change
Change Change

DIFF
DIFF
DIFF
DIFF
DIFF

reprun reports an inconsistency in the data
checksum (data signature) of runs 1 and 2 that starts
inline 193

2 — Avoid absolute file paths: reproot

The problem:

* Code that relies on the use of absolute file paths
won't work in a new computer until you adjust file
paths, at least once per project

* Kristoffer's root path
if "“c(username)'" == "wb462869" {

global code "C:\Users\wb462869\GitHub\ProjectA"

}
* Ben's root path
if "“c(username)'" == "bbdaniels" {

global data "/Users/bbdaniels/Dropbox/ProjectA"
global code "/Users/bbdaniels/GitHub/ProjectA"

global data "C:\Users\wb462869\Dropbox\Projects\ProjectA"

Solution:

reproot manages file paths in the backend,
looking in pre-defined folder locations for projects

Needs to be set up only once per computer

Works with multi-rooted projects. For example:
* Datais on OneDrive or Dropbox
* CodeisinaGitHub repository

2 — No more absolute file paths: reproot

= reproot - settings file setup

Description:

This sets the paths reproot will search for root files.

Select the search paths to be included:

8 | 2:C/Users/WB462869/github

B 4.C\Users\WB462869\github\repkit\src\tests\reproot
] 4:CA\Users\WEB462869\Dropbox

* Use reproot to get root paths
reproot, project("proj-a"™) ///
roots("code data") prefix("prja_")

* Load data

use "${prja_data}/data/raw.dta"

* Run analysis

do "${prja_code}/code/tabl.do"

do "${prja_code}/code/tab2.do"

Add another search path:
Browse . . .

Search depth specific to this search

4

-

Add path to possible options

3 — Manage dependencies simply: repado

The problem:

Missing Stata dependencies stop code execution

Using different versions of Stata dependencies can
produce different results for the same code,
causing problems in reproducibility

Solution:

Use repado to temporarily change the
dependencies folder (ado) in a main do-file

Use one ado folder by project and share it with
your team

When creating a reproducibility package, include
the ado folderin it

Mame Date modified Type
I ado 10/30/2024 9:49 AM File folder
Analysis 10/30/2024 %49 AM File folder
Cleaning 10/30/2024 9:49 AM File folder
Construct 10/30/2024 9:49 AM File folder
Preliminary 10/30/2024 9:49 AM File folder
B main.do 10/28/2024 12:57 PM DO File
Marne Date modified Type
- 10/30/2024 9:49 AM File folder
€ 10/30/2024 9:45 AM File folder
f 10/30/2024 9:45 AM File folder
i 10/30/2024 9:45 AM File folder
o 10/30/2024 9:49 AM File folder
r 10/30/2024 9:49 AM File folder
5 10/30/2024 9:49 AM File folder
D backup.trk 10/25/2024 1:14 PM TRK File
D stata.trk 10/28/2024 12:57 PM TRK File

3 — Manage dependencies simply: repado

maindo X
1
2 ._..'::=:=.:>:=:=.:>:=:=.:>:=:=.:>:
3 T Main do-file
a R i e e R e R e e S S R R R SRS ST
5
6 * Set version
7 * Use the same that the authors specify in the README.
3 * If no version is mentioned, use your current Stata installation version.
9 version 17.@
18
11 * Set project global(s)
12 global project “C:/Users/wb532468/0neDrive - WBG/Projects/malaria-effects”
13 global code "${project}/code”
14
15 * 5et ado folder in the dofiles/code folder
16 cap which repado
17 if _rc == 111 {
18 T ssc install repkit
19 }
28 repado using “"${code}/ado™
21
22 * Run do files
23 do "${code}/cleaning.do”
24 do "${code}/mainresults.do”
25 do "${code}/appendix.dc”
26
27 * End of do-file!
28

. adopath
[1] (BASE)
[2] (PLUS)

"C:\Program Files\Statal8\ado\base/"
"C:/Users/wb532468/0neDrive - WBG/Documents/Projects/malaria-effects/code/ado/™

4 — Beautify your Stata code: 1int

The problem:

* Messy code is hard to understand and error-prone

* More importantly: it's not transparent at all!

Solution:
e]lint:acodelinter forStata

* It scans a do-file and flags coding styles issues, according to the DIME Analytics
Stata Style Guide

https://worldbank.github.io/dime-data-handbook/coding.html#the-dime-analytics-stata-style-guide
https://worldbank.github.io/dime-data-handbook/coding.html#the-dime-analytics-stata-style-guide

4 — Beautify your Stata code: 1int

bad.de X
1 F Rules =
2 * Hard tabs should not be used
3 * "delimit" should not be used
4 * In brackets after "for" or "if", indentation should be used
5 * Too long lines should be divided into multiple lines
6 * Before an opening curly bracket "{", put a whitespace
7 * Remove blank lines before closing brackets
8 * Remove duplicated blank lines
9
18 * Stata codes to be corrected =
11
12 * All hard tabs are replaced with soft tabs (= whitespaces)
13
14 * delimit is corrected and three forward slashes will be used instead
15 #delimit ;
16
17 foreach something in something something something something something something
18 something something{ ; // some comment
19 T do something ;
28 Y
21
22 #delimit cr
23
24 * Add indentation in brackets
25 if something {
26 do something
27 if another == 1 {
28 do that
29 ¥
30 }
zil
32 foreach ii in potato potato cassava maize potato ///
33
34 if something ~= 1 & something != . {
35
36 T
37 ¥
38
39 * split a long line into multiple lines
46 * (for now, too long comments are not corrected)
41
[potato cassava maize petato cassava maize {
42 if something ~= 1 & something != . {

cassava maize potato cassava maize potato cassava maize potato cassava maize potato cassava maize potato cassava maize potato cassava maize {

do something // some wery very very wery very very very very very very very Very very very very very very very very very very very long comment

foreach ii in potato potato cassava maize potato cassava maize potato cassava maize potato cassava maize potato cassava maize potate cassava maize

do something // some wery very very very very very Very VEry very Very very VEry VEry very Very Very Very very very very very very long comment

[

Hard tabs used instead of soft tabs:

Ione-letter local name in for-loop:

Non-standard indentation in { } code block:

No indentation on line following ///:

Use of . where missing() is appropriate:

Missing whitespaces around operators:

Implicit logic in if-condition:

Delimiter changed:

Morking directory changed:

Lines too long:

IGlobal macro reference without { }:

Potential omission of missing values in expression:
Backslash detected in potential file path:

Tilde (~) used instead of bang (!) in expression:

For more information about coding guidelines wisit the Stata linter wiki.

of tilde (w).
of tilde (~)
of tilde (~).
of tilde (~).
of tilde (~).

(line 48): After declaring for loop statement or if-else statement, add indentation (4 whitespaces).
(line 48): Use "!missing(var)" instead of "var < ." or "var JUor Mvar = LT

(line 53): Use "!missing(var)" instead of "var < ." or "var != ." or "var ~= ."

(line 60): Use "!missing(var)" instead of "var < ." or "var != ." or "var ~= ."

(line 69): In for loops, index names should describe what the code is looping over. Do not use an abstract index such as
(line 69): After declaring for loop statement or if-else statement, add indentation (4 whitespaces).
(line 34): Are you using tilde (~) for negation? If so, for negation, use bang (!) instead

(line 42): Are you using tilde (~) for negation? If so, for negation, use bang (!) instead

(line 48): Are you using tilde (~) for negation? If so, for negation, use bang (!) instead

(line 53): Are you using tilde (~) for negation? If so, for negation, use bang (!) instead

(line 6@): Are you using tilde (~) for negation? If so, for negation, use bang (!) instead

(line 73): Are you taking missing values into account properly? (Remember that "a != 8" or

"a > 8" include cases where a is missing.)

lint "test/bad.do"™, wverbose

4 — Beautify your Stata code: 1int

“"Programs must be written for people to

read, and only incidentally for machines to
execute.”

—Abelson, Susman, and Susman, Structure and
Interpretation of Computer Programs (1985)

https://www.goodreads.com/book/show/43713.Structure_and_Interpretation_of_Computer_Programs
https://www.goodreads.com/book/show/43713.Structure_and_Interpretation_of_Computer_Programs

Remember: repkit

Package site

GitHub repository on s page

| repkit

I’epkit Installation

Contributions

This Stata module is a package providing a utility toolkit for reproducibility best- Authors

practices. The motivation for this package is to make the World Bank’s

?
C O m m e nts O r b U g S . H e re reproducibility best-practices more accessible to a wider Stata community. The

best-practices promoted in this package appreciated identified and

implemented as part of the World Bank’s reproducibility effort.

Currently available in SSC:
ssc install repkit

https://worldbank.github.io/repkit/
https://github.com/worldbank/repkit
https://github.com/worldbank/repkit/issues

(@

DiME

ANALYTICS

=i

-5

	Slides
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

